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ABSTRACT. In this paper we introduce the notion of generaized (α, ψ)− contractive mappings on a multiplicative metric space

and partially ordered multiplicative metric space and prove some fixed point theorems for such contractions. Also we provide

two supporting examples.

1 Introduction and Preliminaries

In 1922, Banach [2] proved a theorem which is now well known as ”Banach’s Fixed point theorem” to establish

the existence and uniqueness of fixed point of a contractive mapping in a complete metric space. This principle is

applicable to a variety of subjects such as integral equations, differential equations, image processing and many

others. The study on the existence of fixed points of some mappings satisfying certain contractions has many

applications and has been the center of various research activities. In the past years, many authors generalized

Banach’s fixed point theorem to various spaces such as Quasi-metric spaces, Fuzzy metric spaces, Partial metrics

paces and generalized metric spaces [7,8].

On the other hand, in 2008, Bashirov et al.[1] defined a new distance so called a multiplicative distance by
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using the concepts of multiplicative absolute value. In 2012, Ozavsar and Cevikel [5] investigated multiplicative

metric spaces by remarking its topological properties, and introduced the concept of multiplicative contraction

mapping and proved some fixed point theorems for multiplicative contraction mappings of multiplicative metric

spaces.

In 2012, Samet, Vetro and Vetro [3] introduced the concept of (α, ψ)- contractive maps where α is an α-

admissable mapping which is a new direction in the context of generalization of contraction maps and proved

the existence of fixed points of such mappings. In 2015 H.H. Alsuami, S. Chandok, M.A. Taoudi, I.M. Erhan [4]

proved some fixed point theorems for (α, ψ)- rational type contractive mappings.

Recently Praveen Kumar, Shin Min Kang, Sanjay Kumar and Chahn Yong Jung [6] proved fixed point theorems

for generalized (α, ψ)- contractive mappings in multiplicative metric spaces.

Motivated and inspired by the results of Praveen Kumar, Shin Min Kang, Sanjay Kumar and Chahn Yong Jung

[6], in this paper, we improve the result of [6], and prove fixed point theorems for generalized (α, ψ)- contractive

mappings in multiplicative metric spaces with rational inequalities. Supporting examples are provided.

The letter R+ denote the set of all positive real numbers.

Definition 1.1. (A.E.Bashirov, E.M.Kurplnara, A.Ozyapici [1]). Let X be a nonempty set. A multiplicative metric

is a mapping d : X× X → R+ satisfying the following conditions:

(i) d(x, y) ≥ 1 for all x, y ∈ X and d(x, y) = 1, if and only if x = y.

(ii) d(x, y) = d(y, x) for all x, y ∈ X.

(iii) d(x, y) ≤ d(x, z).d(z, y) for all x, y, z ∈ X.(Multiplicative triangle inequality) Also (X, d) is called a multiplica-

tive metric space.

Note: Define d : R+× R+ → [1, ∞) by d(x, y) = max{ x
y , y

x }. Then R+ is a multiplicative metric space with

respect to d.

Example 1.2. (M.Ozavser, A.C.Cevikel [5]). Let (R+)n be the collection of all n−tuples of positive real numbers.

Let d∗ : (R+)n × (R+)n → R+ be defined as follows d∗(x, y) =| x1
y1
|∗ . | x2

y2
|∗ ...... | xn

yn
|∗ .

where x = (x1, x2, ...xn), y = (y1, y2, ...yn) ∈ R+ and

| . |∗ : R+ → R+ is | a |∗=

 a i f a ≥ 1

1
a i f a ≤ 1

Then ((R+)n, d∗) is a multiplicative metric space.

Example 1.3. (M.Ozavser, A.C.Cevikel [5]).Let a > 1 be fixed real number. Then da : Rn → Rn is defined by

da(w, z) = a∑n
i=1|wi−zi |

where w = (w1, w2, ...wn), z = (z1, z2, ...zn) ∈ Rn.

Obviously, (Rn, da) is a multiplicative metric space. We can also extended multiplicative metric to Cn by the

following definition: da(w, z) = a∑n
i=1|wi−zi | where w = (w1, w2, ...wn), z = (z1, z2, ...zn) ∈ Cn.

Definition 1.4. (M.Ozavser, A.C.Cevikel [5]).(Multiplicative convergence). Let (X, d) be a multiplicative metric

space, {xn} be a sequence in X and x ∈ X. If for every multiplicative open ball Bε(x) = {y/d(x, y) < ε}, ε > 1
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there exists a natural number N such that for n ≥ N, xn ∈ Bε(x), the sequence {xn} is said to be multiplicative

converging to x, denoted by xn → x (n→ ∞).

Definition 1.5. (M.Ozavsar, A.C.Civikel [5]). Let (X, d) be a multiplicative metric space, {xn} be a sequence in

X. The sequence {xn} is called a multiplicative Cauchy sequence if, for each ε > 1, there exists N ∈ N such that

d(xn, xm) < ε, for all m, n ≥ N

Definition 1.6. (M.Ozavsar, A.C.Civikel [5]).Let (X, d) be a multiplicative metric space. We call (x, d) is complete

if every multiplicative Cauchy sequence in X is multiplicative convergent to x ∈ X.

Definition 1.7. (M.Ozavsar, A.C.Civikel [5]). Let (X, d) be a multiplicative metric space. A mapping f : X → X

is called a multiplicative contraction if there exists a real constant λ ∈ [0, 1) such that d( f x, f y) ≤ d(x, y)λ for all

x, y ∈ X.

Definition 1.8. (M.Ozavsar, A.C.Civikel [5])(Multiplicative continuity). Let (X, dX) and (Y, dY) be two multiplica-

tive metric spaces and f : X → Y be a function. If for every ε > 1, there exists δ > 1 such that f (Bδ(x)) ⊂ Bε( f (x)),

then we call f multiplicative continuous at x ∈ X.

Lemma 1.9. (M.Ozavsar, A.C.Civikel [5]). Let (X, d) be a multiplicative metric space, {xn} be a sequence in X and x ∈ X.

Then xn → x (n→ ∞) if and only if d(xn, x)→ 1 (n→ ∞).

Lemma 1.10. (M.Ozavsar, A.C.Civikel [5]). Let (X, d) be a multiplicative metric space, {xn} be a sequence in X. Then

{xn} is a multiplicative Cauchy sequence if and only if d(xn, xm)→ 1 (m, n→ ∞).

In 2012, Samet et al. [3] introduced the concept of α−admissible mappings and established fixed point

theorems for these mappings in complete metric spaces. In fact, these results extend and generalize many existing

fixed point results present in the literature.

Definition 1.11. (Samet et al.[3]) Let X be a non empty set, T : X → X be a mapping and α : X× X → [0, ∞) be a

function. We say that T is α−admissible if α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1 for all x, y ∈ X.

Example 1.12. (Samet et al. [3]) Let X = [0, ∞). Define mapping T : X → X and α : X× X → [0, ∞) by

Tx =
√

x for all x ∈ X and α(x, y) =

 2 i f x ≥ y

0 i f x < y
respectively. Then T is an α−admissible mapping.

Example 1.13. (Samet et al. [3]) Let X = R. Define mapping T : X → X and α : X× X → [0, ∞) by

Tx =

 ln | x | i f x 6= y

7 i f x = 0
and α(x, y) =

 ex−y i f 0 < y ≤ x

0 otherwise,
for all x, y ∈ X respectively. Then T is an α−admissible mapping.

Denote by Ψ1 the family of non-decreasing functions ψ : [0, ∞)→ [0, ∞) such that ∑∞
n=1 ψn(t) < +∞ for each

t > 0, where ψn is the n−th iterate of ψ.

Samet et al. [3] introduced the notion of α− ψ- contractive mappings in a metric space as follows:
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Definition 1.14. Let T be a mapping of a metric space (X, d) into itself. Then T is said to be an (α − ψ) −

contractive mappings if there exist two functions α : X× X → [0, ∞) and ψ ∈ Ψ1 such that

α(x, y).d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X.

The (α− ψ)-contraction was further generalized by Alsulami et al. [4] in the setting of a generalized metric

[4] space to rational contraction known as

(α, ψ)− rational type-I as follows:

Let Ψ2 be the family of non-decreasing functions ψ : [0, ∞)→ [0, ∞) satisfying the following properties:

(i) ψ is upper semi-continuous (i.e., x0 ∈ [0, ∞)⇒ limx→x0 sup ψ(x) ≤ ψ(x0)) and non-decreasing;

(ii) {ψn(t)}n∈N converges to 0 as n→ ∞ for all t > 0;

(iii) ψ(t) < t for every t > 0.

Definition 1.15. ( Alsulami et al. [4])Let T be a mapping of a generalized metric space (X, d) into itself. Then T

is said to be an (α− ψ)-rational type− I contractive mapping if there exist two functions α : X × X → [0, ∞) and

ψ ∈ Ψ2 such that

α(x, y).d(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X, where

M(x, y) = max{d(Tx, x), d(Ty, y), d(x, y), d(Tx,y).d(Ty,x)
1+d(x,y) , d(Tx,x).d(Ty,y)

1+d(Tx,Ty) }.

Praveen Kumar et al. [6] introduced the notion of generalized (α−ψ)-contractive mapping in a multiplicative

metric space as follows:

Let Ψ3 be the family of functions ψ : [0, ∞)→ [0, ∞) satisfying the following properties:

(i) ψ is upper semi-continuous and non-decreasing;

(ii) ∏∞
n=1 ψn(t) < ∞ for each t > 0, where ψn is the n−th iterate of ψ;

(iii) ψ(t) < t for every t > 0.

Definition 1.16. ( Praveen Kumar et al. [6]) Let T be a mapping of a multiplicative metric space (X, d) into itself.

Then T is said to be a generalized (α− ψ)− contractive mapping if there exist two functions α : X × X → [0, ∞)

and ψ ∈ Ψ3 such that

α(x, y).d(Tx, Ty) ≤ ψ(M1(x, y)) for all x, y ∈ X, where

M1(x, y)= max{d(Tx, x), d(Ty, y), d(x, y), [d(Tx, y).d(Ty, x)]
1
2 ,

d(Tx,x),d(Ty,y)
1+d(x,y) , d(Tx,y),d(Ty,x)

1+d(x,y) , d(Tx,y),d(Ty,x)
1+d(Tx,Ty) }

Theorem 1.17. ( Praveen Kumar et al. [6])Let T be a mapping of a complete multiplicative metric space (X, d) into itself

and α : X× X → [0, ∞) be a given function satisfying the following conditions:

(C1) T is an α−admissible mapping;

(C2) T is a generalized (α, ψ)- contractive mapping;

(C3) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T2x0) ≥ 1;

(C4) T is continuous.

Then T has a fixed point.
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2 Main Results

In this section we introduce the notion of (α, ψ)− contractive mappings in the context of a multiplicative metric

space as follows:

Let Ψ4 be the family of functions ψ : [1, ∞)→ [1, ∞) satisfying the following properties:

(i) ψ is upper semi-continuous and non-decreasing;

(ii) ∏∞
n=1 ψn(t) < ∞ for each t > 1, where ψn is the n−th iterate of ψ.

(iii) ψ(t) < t for every t > 1.

Example 2.1. Define ψ(t)=1 + t−1
2 .

Then ψ(t)=1 + t−1
2 = t+1

2 < t and ψ is increasing.

and ψ2(t)= ψ(ψ(t)) = ψ( t+1
2 ) = t+3

4

ψ3(t) = ψ(ψ2(t)) = t+7
8 ............. ψn(t) = t+2n−1

2n

Therefore ψn(t) = t+2n−1
2n = 1 + t−1

2n

Since ∏ xn is convergent⇔ ∑ | xn − 1 | is convergent,

hence ∏ ψn(t) is convergent⇔ ∑ | t−1
2n | is convergent.

Therefore ∏ ψn(t) is convergent.

Hence ψ ∈ Ψ4.

Now we introduce α−admissiblity of a mapping T on a partially ordered set X and generalized (α, ψ)−

contractivity o f a mapping T in a partially ordered multiplicative metric space X.

Definition 2.2. Let(X,�) be a partially ordered set, T be a self mapping on X

and α : X× X → [0, ∞) be a function. We say that T is α−admissible if x and y are comparable and α(x, y) ≥ 1⇒

α(Tx, Ty) ≥ 1 for all x, y ∈ X.

Definition 2.3. Let T be a mapping of a complete partially ordered multiplicative metric space (X,�, d) into itself.

Then T is said to be a generalized (α, ψ)- contractive mapping if there exist two functions α : X × X → [0, ∞) and

ψ ∈ Ψ4 such that

α(x, y).d(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X.

where M(x, y) = max{d(Tx, x), d(Ty, y), d(x, y), [d(Tx, y).d(Ty, x)]
1
2 }, whenever x and y are comparable.

Now we extend the same definition to another contraction condition:

Definition 2.4. Let T be a mapping of a complete partially ordered multiplicative metric space (X,�, d) into itself.

Then T is said to be a generalized rational (α, ψ)- contractive mapping if there exist two functions α : X × X →

[0, ∞) and ψ ∈ Ψ4 such that

α(x, y).d(Tx, Ty) ≤ ψ(M2(x, y)) for all x, y ∈ X, where

M2(x, y)= max{d(Tx, x), d(Ty, y), d(x, y), [d(Tx, y).d(Ty, x)]
1
2 ,

d(Tx,x),d(Ty,y)
d(x,y) , d(Tx,y),d(Ty,x)

d(x,y) , d(Tx,y),d(Ty,x)
d(Tx,Ty) }, whenever

x and y are comparable.



K.P.R Sastry, K.K.M.Sarma and S.Lakshmana Rao 86

We observe that from the above contraction conditions M1(x, y) ≤ M2(x, y)

Now we establish one of our main results for generalized (α, ψ)− contractive mappings in a multiplicative metric

space and a partially ordered multiplicative metric space.

Theorem 2.5. Let T be a mapping of a complete multiplicative metric space (X, d) into itself and α : X× X → [0, ∞) be a

given function and ψ ∈ Ψ4 satisfying the following conditions:

(C1) T is an α−admissible mapping

(C2) T is a generalized (α, ψ)- contractive mapping

i.e., α(x, y).d(Tx, Ty) ≤ ψ(M(x, y)) for all x, y ∈ X.

where M(x, y) = max{d(Tx, x), d(Ty, y), d(x, y), [d(Tx, y).d(Ty, x)]
1
2 } (2.5.1)

(C3) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T2x0) ≥ 1

(C4) T is continuous (or)

(C′4) Suppose xn → x∗ and α(xn, xn+1) ≥ 1 for every n, then α(xn, x∗) ≥ 1.

Then T has a fixed point.

(C5) Further if x and y are fixed points of T then either α(x, y) < 1 or x = y.

Proof. From (C3), there exists a point x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T2x0) ≥ 1

We construct a sequence {xn} in X by xn = Tnx0 = Txn−1 for all n ∈ N.

It is obvious that if xn = xn+1 for some n ∈ N, then xn is a fixed point of T.

Consequently, we suppose that xn 6= xn+1, ∀n ∈ N

From (C1), T is an α−admissible, and hence α(x0, Tx0) = α(x0, x1) ≥ 1

This implies α(Tx0, Tx1) =α(x1, x2) ≥ 1 and α(Tx1, Tx2) =α(x2, x3) ≥ 1.

By induction, we get α(xn, xn+1) ≥ 1 ∀n ≥ 0 (2.5.2)

By similar argument, we have α(x0, x2) = α(x0, T2x0) ≥ 1

and hence α(Tx0, Tx2) = α(x1, x3) ≥ 1

By induction, we get α(xn, xn+2) ≥ 1 ∀n ≥ 0 (2.5.3)

From (C2) and (2.5.2) putting x = xn and y = xn−1 in (2.5.1)

α(xn, xn−1).d(Txn, Txn−1) ≤ ψ(M(xn, xn−1))

Write an = d(xn+1, xn)

Now an = d(xn+1, xn) = 1.d(Txn, Txn−1) ≤ α(xn, xn−1).d(Txn, Txn−1)

≤ ψ(M(xn, xn−1)) (2.5.4)

where M(xn, xn−1) =

max{d(Txn, xn), d(Txn−1, xn−1), d(xn, xn−1), [d(Txn, xn−1).d(Txn−1, xn)]
1
2 }

= max{d(xn+1, xn), d(xn, xn−1), d(xn, xn−1), [d(xn+1, xn−1).d(xn, xn)]
1
2 }

= max{d(xn+1, xn), d(xn, xn−1), [d(xn−1, xn+1)]
1
2 }

= max{d(xn+1, xn), d(xn, xn−1)}

= max{an, an−1} (where an = d(xn+1, xn)).

From (2.5.4)

an = d(xn+1, xn) ≤ ψ(max{an, an−1})
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Suppose an−1 < an, then

an ≤ ψ(an) < an (property of ψ)

a contradiction, since an > 1

Therefore an ≤ an−1.

Therefore an ≤ ψ(an−1) < an−1. (2.5.5)

Therefore an < an−1 for n = 1, 2, 3, ....

Therefore {an} is a decreasing sequence, which converges to r (≥ 1) say.

since ψ is upper semi continuous, from (2.5.5)

r ≤ ψ(r) ≤ r (as n→ ∞)

Therefore r = 1.

Now we show that {xn} is a Cauchy sequence in X

Suppose xn = xm for some n 6= m, Without loss of generality we may assume that m > n + 1.

an = d(xn, xn+1) ≤ d(xn, xm).d(xm, xn+1) = 1.am

Therefore an ≤ am < an, a contradiction.

Therefore xn 6= xm, for n 6= m.

Now d(xn, xn+k) ≤ d(xn, xn+1).d(xn+1, xn+2)......d(xn+k−1, xn+k)

= ψn(d(x0, x1)).ψn+1(d(x0, x1))......ψn+k−1(d(x0, x1))

= ∏n+k−1
p=n ψp(d(x0, x1))

≤ ∏∞
p=n ψp(d(x0, x1))→ 1 as n→ ∞.

Therefore {xn} is a Cauchy sequence in X.

Since X is a complete metric space, so there exist x∗ in X such that xn → x∗.

i.e., limn→∞ d(xn, x∗) = 1 (2.5.6)

Suppose (C′4) holds.

i.e., T is continuous, then from (2.5.6) we have Txn → Tx∗

i.e., limn→∞ d(Txn, Tx∗) = limn→∞ d(xn+1, Tx∗) = 1

By uniqueness of limit Tx∗ = x∗.

Therefore x∗ is a fixed point of T.

Now suppose (C′4) holds, then xn → x∗ and α(xn, xn+1) ≥ 1 for every n, so that α(xn, x∗) ≥ 1

Now from (2.5.1) d(Txn, Tx∗) ≤ α(xn, x∗).d(Txn, Tx∗)

≤ ψ(M(xn, x∗)) (2.5.7)

where M(xn, x∗)=

max{d(Txn, xn), d(Tx∗, x∗), d(xn, x∗), [d(Txn, x∗).d(Tx∗, xn)]
1
2 }

= max{d(xn+1, xn), d(Tx∗, x∗), d(xn, x∗), [d(xn+1, x∗).d(Tx∗, xn)]
1
2 }

On letting n→ ∞

= max{1, d(Tx∗, x∗), 1, [d(Tx∗, x∗)]
1
2 }

= d(Tx∗, x∗)

From (2.5.7), d(x∗, Tx∗) ≤ ψ(M(xn, x∗))→ ψ(d(Tx∗, x∗)) < d(Tx∗, x∗)

a contradiction,if d(Tx∗, x∗) 6= 1.
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Therefore d(Tx∗, x∗) = 1

Therefore Tx∗ = x∗

Therefore x∗ is a fixed point of T.

Suppose x and y are fixed points of T, then we show that α(x, y) < 1 or x = y

If α(x, y) < 1 then we are through.

Suppose α(x, y) ≥ 1. Then

from (2.5.1) α(x, y).d(Tx, Ty) ≤ ψ(M(x, y)) (2.5.8)

where M(x, y) = max{d(Tx, x), d(Ty, y), d(x, y), [d(Tx, y), d(Ty, x)]
1
2 }

= max{d(x, x), d(y, y), d(x, y), [d(x, y).d(y, x)]
1
2 }

= max{1, 1, d(x, y), d(x, y)}

= d(x, y)

Therefore d(x, y) ≤ α(x, y).d(Tx, Ty) ≤ ψ(d(x, y)) < d(x, y) a contradiction, if x 6= y

Therefore x = y.

Now we establish our second main result for generalized rational (α, ψ)− contractivemappings.

Theorem 2.6. Let T be a mapping of a compete multiplicative metric space (X, d) into itself mapping and α : X × X →

[0, ∞) be a given function and ψ ∈ Ψ4 satisfying the following conditions:

(C1) T is an α−admissible mapping

(C2) T is a generalized (α, ψ)- contractive mapping

i.e., α(x, y).d(Tx, Ty) ≤ ψ(M2(x, y)) for all x, y ∈ X, where

M2(x, y)= max{d(Tx, x), d(Ty, y), d(x, y), [d(Tx, y).d(Ty, x)]
1
2 ,

d(Tx,x),d(Ty,y)
d(x,y) , d(Tx,y),d(Ty,x)

d(x,y) , d(Tx,y),d(Ty,x)
d(Tx,Ty) } (2.6.1)

(C3) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T2x0) ≥ 1

(C4) T is continuous (or)

(C′′4 ) Suppose xn → x∗ and α(xn, xn+1) ≥ 1 for every n, then α(xn, x∗) ≥ 1.

Then T has a fixed point.

(C5) Further if x and y are fixed points of T then either α(x, y) < 1 or x = y.

Proof. From (C3), there exists a point x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, T2x0) ≥ 1

We construct a sequence {xn} in X by xn = Tnx0 = Txn−1 for all n ∈ N.

It is obvious that if xn = xn+1 for some n ∈ N, then xn is a fixed point of T.

Consequently, we suppose that xn 6= xn+1, ∀n ∈ N

From (C1), T is an α−admissible, we have α(x0, Tx0) = α(x0, x1) ≥ 1

This implies α(Tx0, Tx1) =α(x1, x2) ≥ 1 and α(Tx1, Tx2) =α(x2, x3) ≥ 1.

By induction, we get α(xn, xn+1) ≥ 1 ∀n ≥ 0 (2.6.2)

By similar argument, α(x0, x2) = α(x0, T2x0) ≥ 1

and hence α(Tx0, Tx2) = α(x1, x3) ≥ 1

By induction, we get α(xn, xn+2) ≥ 1 ∀n ≥ 0 (2.6.3)
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From (C2) and (2.6.2) putting x = xn and y = xn+1 in (2.6.1)

Write an = d(xn, xn+1)

α(xn−1, xn).d(Txn−1, Txn) ≤ ψ(M(xn−1, xn))

Now an = d(xn, xn+1) = 1.d(Txn−1, Txn) ≤ α(xn−1, xn).d(Txn−1, Txn)

≤ ψ(M2(xn−1, xn)) (2.6.4)

where M2(xn−1, xn) = max{d(Txn−1, xn−1), d(Txn, xn), d(xn−1, xn), [d(Txn−1, xn).d(Txn, xn−1)]
1
2 ,

d(Txn−1,xn−1).d(Txn ,xn)
d(xn−1,xn)

, d(Txn−1,xn).d(Txn ,xn−1)
d(xn−1,xn)

, d(Txn−1,xn).d(Txn ,xn−1)
d(Txn−1,Txn)

}

= max{d(xn, xn−1), d(xn+1, xn), d(xn−1, xn), [d(xn, xn).d(xn+1, xn−1)]
1
2 ,

d(xn ,xn−1).d(xn+1,xn)
d(xn−1,xn)

, d(xn ,xn).d(xn+1,xn−1)
d(xn−1,xn)

, d(xn ,xn).d(xn+1,xn−1)
d(xn ,xn+1)

}

= max{d(xn−1, xn), d(xn, xn+1), [d(xn+1, xn−1)]
1
2 , d(xn+1, xn),

d(xn−1,xn+1)
d(xn−1,xn)

, d(xn−1,xn+1)
d(xn ,xn+1)

}

≤ max{d(xn−1, xn), d(xn, xn+1),
d(xn−1,xn).d(xn ,xn+1)

d(xn−1,xn)
, d(xn−1,xn).d(xn ,xn+1)

d(xn ,xn+1)
}

= max{d(xn−1, xn), d(xn, xn+1), d(xn, xn+1), d(xn−1, xn)}

= max{d(xn−1, xn), d(xn, xn+1)}

= max{an−1, an} (where an = d(xn+1, xn)).

From (2.6.4)

an = d(xn+1, xn) ≤ ψ(max{an, an−1})

Suppose an−1 < an, then

an ≤ ψ(an) < an (property of ψ)

a contradiction, since an > 1

Therefore an ≤ an−1.

and hence an ≤ ψ(an−1) < an−1 (2.6.5)

Therefore an < an−1 for n = 1, 2, 3, ....

Therefore {an} is a decreasing sequence, which converges to r (≥ 1) say.

Since ψ is upper semi continuous, from (2.6.5)

r ≤ ψ(r) ≤ r (as n→ ∞)

Therefore r = 1.

Now we show that {xn} is a Cauchy sequence in X

Suppose xn = xm for some n 6= m, Without loss of generality we may assume that m > n + 1.

Therefore xn+1 = xm+1

an = d(xn+1, xn) = d(xm+1, xm) = am < an if m > n, a contradiction.

Therefore xn 6= xm, for n 6= m.

Now d(xn, xn+k) ≤ d(xn, xn+1).d(xn+1, xn+2)......d(xn+k−1, xn+k)

= ψn(d(x0, x1)).ψn+1(d(x0, x1))......ψn+k−1(d(x0, x1))

= ∏n+k−1
p=n ψp(d(x0, x1))

≤ ∏∞
p=n ψp(d(x0, x1))→ 1 as n→ ∞.

Therefore {xn} is a Cauchy sequence in X.

Since X is a complete metric space, so there exist x∗ in X such that xn → x∗.

i.e., limn→∞ d(xn, x∗) = 1 (2.6.6)
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Suppose (C4) holds. i.e., T is continuous. Then from (2.6.6) we have Txn → Tx∗

i.e., limn→∞ d(Txn, Tx∗) = limn→∞ d(xn+1, Tx∗) = 1

By uniqueness of limit Tx∗ = x∗.

Therefore x∗ is a fixed point of T.

Now suppose (C′′4 ) holds. then xn → x∗ and α(xn, xn+1) ≥ 1 for every n, so that α(xn, x∗) ≥ 1

Now from (2.6.1) d(Txn, Tx∗) ≤ α(xn, x∗).d(Txn, Tx∗)

≤ ψ(M2(xn, x∗)) (2.6.7)

where M2(xn, x∗)= max{d(Txn, xn), d(Tx∗, x∗), d(xn, x∗), [d(Txn, x∗).d(Tx∗, xn)]
1
2 ,

d(Txn ,xn).d(Tx∗ ,x∗)
d(xn ,x∗) , d(Txn ,x∗).d(Tx∗ ,xn)

d(xn ,x∗) , d(Txn ,x∗).d(Tx∗ ,xn)
d(Txn ,Tx∗) }

On letting n→ ∞

= max{1, d(Tx∗, x∗), 1, [d(Tx∗, x∗)]
1
2 , d(Tx∗, x∗), d(Tx∗, x∗), d(Tx∗ ,x∗)

d(x∗ ,Tx∗)}

= d(Tx∗, x∗)

From (2.6.7), d(x∗, Tx∗) ≤ ψ(M2(xn, x∗))→ ψ(d(Tx∗, x∗)) < d(Tx∗, x∗)

a contradiction,if d(Tx∗, x∗) 6= 1.

Therefore d(Tx∗, x∗) = 1

Hence Tx∗ = x∗

Therefore x∗ is a fixed point of T.

Suppose x and y are fixed points of T, then we show that either α(x, y) < 1 or x = y

If α(x, y) < 1 then we are through.

Suppose α(x, y) ≥ 1. Then

from (2.6.1) α(x, y).d(Tx, Ty) ≤ ψ(M2(x, y)) (2.6.8)

where M2(x, y) = max{d(Tx, x), d(Ty, y), d(x, y), [d(Tx, y).d(Ty, x)]
1
2 ,

d(x,x).d(y,y)
d(x,y) , d(x,y).d(y,x)

d(x,y) , d(x,y).d(y,x)
d(x,y) }

= max{1, 1, d(x, x), d(x, y), 1
d(x,y) , d(x, y), d(y, x)}

= d(x, y)

Therefore d(x, y) ≤ α(x, y).d(Tx, Ty) ≤ ψ(d(x, y)) < d(x, y), a contradiction, if x 6= y

Therefore x = y.

Now we establish our third main result concerning generalized (α, ψ)− contractions on partially ordered mul-

tiplicative metric spaces.

Theorem 2.7. Let (X,�) be a partially ordered set and d be a multiplicative metric space on X. Let T be a self map on a

complete multiplicative metric space on X and α : X × X → [0, ∞) be given function and ψ ∈ Ψ4 satisfying the following

conditions:

(C1) T is increasing and α−admissible mapping

(C2) T is a generalized (α, ψ)- contractive mapping

i.e., α(x, y).d(Tx, Ty) ≤ ψ(M(x, y)) (2.7.1)

where M(x, y) = max{d(Tx, x), d(Ty, y), d(x, y), [d(Tx, y).d(Ty, x)]
1
2 }, for all x, y ∈ X, whenever x and y are compa-
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rable.

(C3) There exists x0 ∈ X such that x0 ≤ Tx0, α(x0, Tx0) ≥ 1 and α(x0, T2x0) ≥ 1

(C4) T is continuous (or)

(C′′′4 ) Suppose {xn} is increasing and xn → x∗ ⇒ α(xn, x∗) ≥ 1

Then T has a fixed point.

(C5) Further if x and y are fixed points of T then (i) x and y are not comparable. (ii)either x and y are comparable and

α(x, y) < 1 or (iii) x = y.

Proof. From (C3), there exists a point x0 ∈ X such that x0 ≤ Tx0, α(x0, Tx0) ≥ 1 and α(x0, T2x0) ≥ 1

We construct a sequence {xn} in X by xn = Tnx0 = Txn−1 for all n ∈ N.

It is obvious that if xn = xn+1 for some n ∈ N, then xn is a fixed point of T.

Consequently, we suppose that xn 6= xn+1, ∀n ∈ N

Since x0 ≤ Tx0 ⇒ x0 ≤ x1

Since T is increasing, so Tx0 ≤ Tx1 ⇒ x1 ≤ x2

By induction xn ≤ xn+1 ∀n ∈ N

Therefore {xn} is an increasing sequence.

Now α(x0, Tx0) = α(x0, x1) ≥ 1,

since T is an α−admissible, α(x1, x2) = α(Tx0, Tx1) ≥ 1

and hence α(x2, x3) = α(Tx1, Tx2) ≥ 1

By induction, we get α(xn, xn+1) ≥ 1 ∀n ≥ 0 (2.7.2)

Now α(x0, x2) = α(x0, T2x0) ≥ 1,

since T is α−admissible, α(x1, x3) = α(Tx0, Tx2) ≥ 1

and hence α(x3, x4) ≥ 1.

by induction α(xn, xn+1) ≥ 1 ∀n ≥ 0 (2.7.3)

Now α(x0, x2) = α(x0, T2x0) ≥ 1, since T is α−admissible,

α(x1, x3) = α(Tx0, Tx2) ≥ 1

and hence α(x2, x4) ≥ 1.

by induction α(xn, xn+2) ≥ 1 ∀n ≥ 0 (2.7.4)

From (C2) and (2.7.3) putting x = xn and y = xn+1 in (2.7.1)

Write an = d(xn, xn+1)

Now an = d(xn, xn+1) = 1.d(Txn−1, Txn) ≤ α(xn−1, xn).d(Txn−1, Txn)

≤ ψ(M(xn−1, xn)) (2.7.5)

where M(xn−1, xn) =

max{d(Txn−1, xn−1), d(Txn, xn), d(xn−1, xn), [d(Txn−1, xn).d(Txn, xn−1)]
1
2 }

= max{d(xn, xn−1), d(xn+1, xn), d(xn−1, xn), [d(xn, xn).d(xn+1, xn−1)]
1
2 }

= max{d(xn, xn−1), d(xn, xn+1), [d(xn−1, xn+1)]
1
2 }

= max{d(xn−1, xn), d(xn, xn+1)}

= max{an−1, an} (where an = d(xn, xn+1)).
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From (2.7.5)

an = d(xn, xn+1) ≤ ψ(max{an, an−1})

Suppose an−1 < an, then

an ≤ ψ(an) < an (property of ψ)

a contradiction, since an > 1

Therefore an ≤ an−1.

and hence an ≤ ψ(an−1) < an−1 (2.7.6)

Therefore an < an−1 for n = 1, 2, 3, ....

Therefore {an} is a decreasing sequence, which converges to r (≥ 1) say.

since ψ is upper semi continuous, from (2.7.6)

r ≤ ψ(r) ≤ r (as n→ ∞)

Therefore r = 1.

Now we show that {xn} is a Cauchy sequence in X

Suppose xn = xm for some n 6= m, Without loss of generality we may assume that m > n + 1.

an = d(xn, xn+1) ≤ d(xn, xm).d(xm, xn+1) = 1.am

Therefore an ≤ am < an, a contradiction.

Therefore xn 6= xm, for n 6= m.

Now d(xn, xn+k) ≤ d(xn, xn+1).d(xn+1, xn+2)......d(xn+k−1, xn+k)

= ψn(d(x0, x1)).ψn+1(d(x0, x1))......ψn+k−1(d(x0, x1))

= ∏n+k−1
p=n ψp(d(x0, x1))

≤ ∏∞
p=n ψp(d(x0, x1))→ 1 as n→ ∞.

Therefore {xn} is a Cauchy sequence in X.

Since X is a complete metric space, so there exist x∗ in X such that xn → x∗.

i.e., limn→∞ d(xn, x∗) = 1 (2.7.7)

Suppose (C4) holds. i.e., T is continuous, then from (2.7.7) we have Txn → Tx∗

i.e., limn→∞ d(Txn, Tx∗) = limn→∞ d(xn+1, Tx∗) = 1

By uniqueness of limit Tx∗ = x∗.

Therefore x∗ is a fixed point of T.

Now, suppose (C′′′4 ) holds. Then {xn} is increasing and xn → x∗ ⇒ α(xn, x∗) ≥ 1

Now from (2.7.1) d(Txn, x∗) ≤ α(xn, x∗).d(Txn, Tx∗)

≤ ψ(M(xn, x∗)) (2.7.8)

where M(xn, x∗)=

max{d(Txn, xn), d(Tx∗, x∗), d(xn, x∗), [d(Txn, x∗).d(Tx∗, xn)]
1
2 }

= max{d(xn+1, xn), d(Tx∗, x∗), d(xn, x∗), [d(xn+1, x∗).d(Tx∗, xn)]
1
2 }

On letting n→ ∞

= max{1, d(Tx∗, x∗), 1, [d(Tx∗, x∗)]
1
2 }

= d(Tx∗, x∗)

From (2.7.8), d(Tx∗, x∗) ≤ ψ(M(xn, x∗))→ ψ(d(Tx∗, x∗)) < d(Tx∗, x∗)
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a contradiction,if d(Tx∗, x∗) 6= 1.

Therefore d(Tx∗, x∗) = 1

hence Tx∗ = x∗)

Therefore x∗ is a fixed point of T.

Suppose x and y are fixed points of T, then we show that either

(i) if x and y are not comparable (or)

(ii) if x and y are comparable and α(x, y) < 1 (or)

(iii) x = y

If x and y are not comparable, there is nothing to prove.

If x and y are comparable and α(x, y) < 1 then we are through.

Suppose (i) and (ii) are do not hold, then x and y are comparable and α(x, y) ≥ 1.

From (2.7.1) α(x, y) = 1.d(x, y) ≤ α(x, y).d(Tx, Ty) ≤ ψ(M(x, y)) (2.7.9)

where M(x, y) = max{d(Tx, x), d(Ty, y), d(x, y), [d(Tx, y), d(Ty, x)]
1
2 }

= max{d(x, x), d(y, y), d(x, y), [d(x, y).d(y, x)]
1
2 }

= max{1, 1, d(x, y), d(x, y)}

= d(x, y)

Therefore d(x, y) ≤ α(x, y).d(Tx, Ty) ≤ ψ(d(x, y)) < d(x, y) a contradiction, if x 6= y

Therefore x = y.

Now we establish our fourth main result concerning generalized rational (α, ψ)− contraction on partially or-

dered multiplicative metric spaces.

Theorem 2.8. Let (X,�) be a partially ordered set and d be a multiplicative metric space on X. Let T be a self map on a

complete multiplicative metric space on X and α : X × X → [0, ∞) be given function and ψ ∈ Ψ4 satisfying the following

conditions:

(C1) T is increasing and α−admissible mapping

(C2) T is a generalized (α, ψ)- contractive mapping

i.e., α(x, y).d(Tx, Ty) ≤ ψ(M2(x, y)) (2.8.1)

where M2(x, y)= max{d(Tx, x), d(Ty, y), d(x, y), [d(Tx, y).d(Ty, x)]
1
2 ,

d(Tx,x),d(Ty,y)
d(x,y) , d(Tx,y),d(Ty,x)

d(x,y) , d(Tx,y),d(Ty,x)
d(Tx,Ty) } for all x, y ∈ X, whenever x and y are comparable.

(C3) There exists x0 ∈ X such that x0 ≤ Tx0, α(x0, Tx0) ≥ 1 and α(x0, T2x0) ≥ 1

(C4) T is continuous (or)

(C′′′′4 ) Suppose {xn} is increasing and xn → x∗ ⇒ α(xn, x∗) ≥ 1

Then T has a fixed point.

(C5) Further if x and y are fixed points of T then (i) x and y are not comparable. (ii)either x and y are comparable and

α(x, y) < 1 or (iii) x = y.

Proof. From (C3), there exists a point x0 ∈ X such that x0 ≤ Tx0, α(x0, Tx0) ≥ 1 and α(x0, T2x0) ≥ 1

We construct a sequence {xn} in X by xn = Tnx0 = Txn−1 for all n ∈ N.
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It is obvious that if xn = xn+1 for some n ∈ N, then xn is a fixed point of T.

Consequently, we suppose that xn 6= xn+1, ∀n ∈ N

Since x0 ≤ Tx0 ⇒ x0 ≤ x1

Since T is increasing, so Tx0 ≤ Tx1 ⇒ x1 ≤ x2

By induction xn ≤ xn+1 ∀n ∈ N

Therefore {xn} is an increasing sequence.

Now α(x0, Tx0) = α(x0, x1) ≥ 1,

since T is an α−admissible, α(x1, x2) = α(Tx0, Tx1) ≥ 1

and hence α(x2, x3) = α(Tx1, Tx2) ≥ 1

By induction, we get α(xn, xn+1) ≥ 1 ∀n ≥ 0 (2.8.2)

Now α(x0, x2) = α(x0, T2x0) ≥ 1,

since T is α−admissible, α(x1, x3) = α(Tx0, Tx2) ≥ 1

and hence α(x3, x4) ≥ 1.

by induction α(xn, xn+1) ≥ 1 ∀n ≥ 0 (2.8.3)

Now α(x0, x2) = α(x0, T2x0) ≥ 1, since T is α−admissible,

α(x1, x3) = α(Tx0, Tx2) ≥ 1

and hence α(x2, x4) ≥ 1.

by induction α(xn, xn+2) ≥ 1 ∀n ≥ 0 (2.8.4)

From (C2) and (2.8.3) putting x = xn and y = xn+1 in (2.8.1)

Write an = d(xn, xn+1)

α(xn−1, xn).d(Txn−1, Txn) ≤ ψ(M2(xn−1, xn))

Now an = d(xn, xn+1) = 1.d(Txn−1, Txn) ≤ α(xn−1, xn).d(Txn−1, Txn)

≤ ψ(M2(xn−1, xn)) (2.8.5)

where M2(xn−1, xn) = max{d(Txn−1, xn−1), d(Txn, xn), d(xn−1, xn), [d(Txn−1, xn).d(Txn, xn−1)]
1
2 ,

d(Txn−1,xn−1).d(Txn ,xn)
d(xn−1,xn)

, d(Txn−1,xn).d(Txn ,xn−1)
d(xn−1,xn)

, d(Txn−1,xn).d(Txn ,xn−1)
d(Txn−1,Txn)

}

= max{d(xn, xn−1), d(xn+1, xn), d(xn−1, xn), [d(xn, xn).d(xn+1, xn−1)]
1
2 ,

d(xn ,xn−1).d(xn+1,xn)
d(xn−1,xn)

, d(xn ,xn).d(xn+1,xn−1)
d(xn−1,xn)

, d(xn ,xn).d(xn+1,xn−1)
d(xn ,xn+1)

}

= max{d(xn−1, xn), d(xn, xn+1), [d(xn+1, xn−1)]
1
2 , d(xn+1, xn),

d(xn−1,xn+1)
d(xn−1,xn)

, d(xn−1,xn+1)
d(xn ,xn+1)

}

≤ max{d(xn−1, xn), d(xn, xn+1),
d(xn−1,xn).d(xn ,xn+1)

d(xn−1,xn)
, d(xn−1,xn).d(xn ,xn+1)

d(xn ,xn+1)
}

= max{d(xn−1, xn), d(xn, xn+1), d(xn, xn+1), d(xn−1, xn)}

= max{d(xn−1, xn), d(xn, xn+1)}

= max{an−1, an} (where an = d(xn+1, xn)).

From (2.8.5)

an = d(xn, xn+1) ≤ ψ(max{an, an−1})

Suppose an−1 < an, then

an ≤ ψ(an) < an (property of ψ)

a contradiction, since an > 1

Therefore an ≤ an−1.
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and hence an ≤ ψ(an−1) < an−1 (2.8.6)

Therefore an < an−1 for n = 1, 2, 3, ....

Therefore {an} is a decreasing sequence, which converges to r (≥ 1) say.

since ψ is upper semi continuous, from (2.8.6)

r ≤ ψ(r) ≤ r (as n→ ∞)

Therefore r = 1.

Now we show that {xn} is a Cauchy sequence in X

Suppose xn = xm for some n 6= m, Without loss of generality we may assume that m > n + 1.

Therefore xn+1 = xm+1

an = d(xn+1, xn) = d(xm+1, xm) = am < an if m > n, a contradiction.

Therefore xn 6= xm, for n 6= m.

Now d(xn, xn+k) ≤ d(xn, xn+1).d(xn+1, xn+2)......d(xn+k−1, xn+k)

= ψn(d(x0, x1)).ψn+1(d(x0, x1))......ψn+k−1(d(x0, x1))

= ∏n+k−1
p=n ψp(d(x0, x1))

≤ ∏∞
p=n ψp(d(x0, x1))→ 1 as n→ ∞.

Therefore {xn} is a Cauchy sequence in X.

Since X is a complete metric space, so there exist x∗ in X such that xn → x∗.

i.e., limn→∞ d(xn, x∗) = 1 (2.8.7)

Suppose (C4) holds. i.e., T is continuous, then from (2.8.7) we have Txn → Tx∗

i.e., limn→∞ d(Txn, Tx∗) = limn→∞ d(xn+1, Tx∗) = 1

By uniqueness of limit Tx∗ = x∗.

Therefore x∗ is a fixed point of T.

Now suppose (C′′′′4 ) holds. Then {xn} is increasing and xn → x∗ ⇒ α(xn, x∗) ≥ 1

Now from (2.8.1) d(Txn, x∗) ≤ α(xn, x∗).d(Txn, Tx∗)

≤ ψ(M2(xn, x∗)) (2.8.8)

where M2(xn, x∗)= max{d(Txn, xn), d(Tx∗, x∗), d(xn, x∗), [d(Txn, x∗).d(Tx∗, xn)]
1
2 ,

d(Txn ,xn).d(Tx∗ ,x∗)
d(xn ,x∗) , d(Txn ,x∗).d(Tx∗ ,xn)

d(xn ,x∗) , d(Txn ,x∗).d(Tx∗ ,xn)
d(Txn ,Tx∗) }

On letting n→ ∞

= max{1, d(Tx∗, x∗), 1, [d(Tx∗, x∗)]
1
2 , d(Tx∗, x∗), d(Tx∗, x∗), d(Tx∗ ,x∗)

d(x∗ ,Tx∗)}

= d(Tx∗, x∗)

From (2.8.8), d(x∗, Tx∗) ≤ ψ(M2(xn, x∗))→ ψ(d(Tx∗, x∗)) < d(Tx∗, x∗)

a contradiction,if d(Tx∗, x∗) 6= 1.

Therefore d(Tx∗, x∗) = 1

Hence Tx∗ = x∗.

Therefore x∗ is a fixed point of T.

Suppose x and y are fixed points of T, then we show that either

(i) if x and y are not comparable (or)

(ii) if x and y are comparable and α(x, y) < 1 (or)
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(iii) x = y

If x and y are not comparable, there is nothing to prove.

If x and y are comparable and α(x, y) < 1 then we are through.

Suppose (i) and (ii) are do not hold, then x and y are comparable and α(x, y) ≥ 1

From (2.8.1) α(x, y) = 1.d(x, y) ≤ α(x, y).d(Tx, Ty) ≤ ψ(M2(x, y)) (2.8.9)

where M2(x, y) = max{d(Tx, x), d(Ty, y), d(x, y), [d(Tx, y), d(Ty, x)]
1
2 }

d(Tx,x),d(Ty,y)
d(x,y) , d(Tx,y),d(Ty,x)

d(x,y) , d(Tx,y),d(Ty,x)
d(Tx,Ty) }

= max{d(x, x), d(y, y), d(x, y), [d(x, y).d(y, x)]
1
2 }

d(x,x),d(y,y)
d(x,y) , d(x,y),d(y,x)

d(x,y) , d(x,y),d(y,x)
d(x,y) }

= max{1, 1, d(x, y), d(x, y), 1
d(x,y) , d(x, y), d(x, y)}

= d(x, y)

Therefore d(x, y) ≤ α(x, y).d(Tx, Ty) ≤ ψ(d(x, y)) < d(x, y) a contradiction, if x 6= y

Therefore x = y.

Corollary 2.9. Theorem 1.17 (Praveen Kumar et al.[6], theorem 2.2)

Proof. We have that M1(x, y) ≤ M2(x, y)

From theorem 2.6 i.e., α(x, y).d(Tx, Ty) ≤ ψ(M1(x, y)) ≤ ψ(M2(x, y))

Therefore T has a fixed point.

Now we give two examples supporting our results, showing the significance of (C′4) and (C′′4 ).

Example 2.10. Let X = {a, b} and a, b are not comparable. Let d be the multiplicative metric on X defining

d(a, b) = 2, d(a, a) = d(b, b) = 1.

Define T : X → X by T(a) = a, T(b) = b and

α : X× X → [0, ∞) by α(x, y) =

 1 i f x = y

1
2 otherwise

Define ψ by ψ(t) = t+1
2 , if t > 1

Now α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1, Since α(Ta, Ta) = α(a, a) ≥ 1.

Therefore T satisfies conditions (C1)-(C4)

Therefore a and b are fixed points of T.

This example shows that T may have two fixed points x and y with α(x, y) < 1

Example 2.11. Let X = [1, ∞) . Let d be the multiplicative metric on X defined by

d(x, y) =

 1 i f x = y

2 otherwise
and α(x, y) =

 1 i f x = y

1
2 otherwise

T : X → X by T(x) = x, ∀ x, and ψ(t) = t+1
2 , if t > 1

Then α(x, y) ≥ 1⇒ α(Tx, Ty) = α(x, y) ≥ 1

Therefore T satisfies all conditions of theorem 2.7

Therefore Every point of X is a fixed points of T.



K.P.R Sastry, K.K.M.Sarma and S.Lakshmana Rao 97

References

[1] A.E. Bashirov, E.M. Kurpinar and A.Ozyapici, Multiplicative calculus and its applications,

J.Math.Analy.App.,337(2008) 36-48. doi: 10.1016/j.jmaa.2007.03.081

[2] Banach, S:Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fun-

dam.Math. 3, 133-181 (1922).

[3] B. Samet, C. Vetro, P. Vetro,Fixed point theorems for α, ψ)- contractive type mappings, Nonlinearanal.,75 (2012)

2154-2165, doi: 10.1016/jj.na.2011.10.014

[4] H.H. Alsulami, S. Chandok, M.A. Taoudi, I.M. Erhan,Some fixed point theorems for (α, ψ)- rationaltype con-

tractive mappings, Fixed Point Theorey Appl., 97 (2015) 12 pages, doi: 10.116/s13663-015-0332-3.

[5] M. Ozavsar, Adem C. Cevikel, Fixed points of multiplicative contraction mapping on multiplicative metric

spaces (2012), arXiv:1205.5131 vl [math.GM], 14 pages.

[6] Praveen Kumar, Shin Min Kang, Sanjay Kumar and Chahn Yong Jung, Fixed point theorems for generalized

(α, ψ)- contractive mappings in multiplicative metric spaces, Int. Journal of Pure and Applied Mathematics.,

Vol 113 No. 5, (2017) 595-607, doi: 10.12732/ijpam.v113i5.7.

[7] R.P.Agarwal, M.A. El-Gebeily and D.O’Regan, Generalized contraction in partially ordered metric spaces,

Applicable Anaysis.87(2008), 109-116.

[8] S.B.Nadler, Multivalued nonlinear contraction mappings, pacific J.Math. 30(1969) 475-488. 3. W.Takahashi,

Nonlinear Functional Analysis: Fixed point theorey and its applications, Yokohama Publishers, 2000.


